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概要
Lefschetz 型とよばれる特異ファイバーを有限個許容する曲面上のファイバー空間を，Lef-

schetzファイバー空間という．現在においても，Lefschetzファイバー空間を活用した有向な 3・
4次元多様体の研究は活発に行われているが，その一方で近年，Lefschetzファイバー空間を用い
て非有向 4次元多様体を研究しようとする動きがある．本稿では，Lefschetz ファイバー空間の
基本事項を解説した後，非有向 Lefschetzファイバー空間とその向き付け二重被覆をとって得ら
れる Lefschetz ファイバー空間の関係性に着目して，2つの非有向 Lefschetz ファイバー空間が
同型であるための必要十分条件について述べる．

1 導入
Lefschetzファイバー空間とは，もともと射影代数多様体のトポロジーを調べる際に Lefschetzが

導入した Lefschetzペンシルを，有限回ブローアップして得られるファイバー空間である．Lefschetz

ファイバー空間が多くの研究者を惹きつける理由は多岐にわたる．Donaldson[5]，Gompf[11] らは
Lefschetz ファイバー空間とシンプレクティック構造を関係づけ，Akbulut と Ozbagci[1]，Loi と
Piergallini[13]，および Girouxと Pardon[10]らは Lefschetzファイバー空間と Stein領域の関係づ
けを行った．その一方で，Lefcshetzファイバー空間は曲面の写像類群の生成元である Dehnツイス
トたちの積により構成することができるという事実がある．これらをまとめると，写像類群にて行わ
れる組合わせ的な議論は Lefschetzファイバー空間を経由することで，3・4次元トポロジーでの議論
に落とし込むことが可能であり，この事実から理解されるように，Lefschetzファイバー空間は非常
興味深い幾何学的対象である．
上で述べたように，Lefschetzファイバー空間はシンプレクティック構造や Stein構造の組合わせ

的な研究を可能にする存在であるが，そのほかに写像類群での議論によるエキゾチック有向 4次元多
様体の組合わせ的な構成にも有用である．Kas[12] と松本幸夫氏 [15] は，任意に与えられた 2 つの
（有向）Lefschetzファイバー空間が同型であるための必要十分条件を，それらのモノドロミー分解に
おける 3つの変換によって記述した（本稿の定理 4.2を参照）．また，松本氏 [14]，[15]，遠藤久顕氏
[6]，および Ozbagci[17]らにより，Lefschetzファイバー空間の情報から 4次元多様体の符号数を計
算するアルゴリズムが確立された．さらに，[7]および [8]では，モノドロミー分解に現れる Dehnツ
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イストをランタン関係式，およびデイジー関係式で置き換えることは Lefschetzファイバー空間の全
空間である有向 4次元多様体に，有理ブローダウン (cf.[9])を施すことに対応することが証明されて
いる．これらの結果は，Lefschetzファイバー空間による十分に多くのエキゾチック有向 4次元多様
体の構成に貢献している．
さて近年，非有向な 4次元多様体を Lefschetzファイバー空間を用いて研究しようとする動きがあ

る (例えば，[16]，[2]，[3])．向き付け可能な状況を踏まえると，Lefschetzファイバー空間が非有向
4次元多様体の組合わせ的研究に貢献することが期待されているが，そのような研究はほとんど実行
されていないように思われる．筆者はこれまで，Lefschetzファイバー空間を介した非有向 4次元多
様体の組合わせ的研究の確立を目指し，そのための土台作り行ってきた．本稿では，その際に得られ
たいくつかの結果について述べる．詳細は [19]を参照していただきたい．
記号について：本稿を通して，Σg，Ng をそれぞれ，向き付け可能，向き付け不可能である種数 g の
連結で滑らかな閉曲面とする．特に，2次元円板と 2次元球面はそれぞれ D2，S2 と表記する．本稿
では N2g+1 を，Σg から開円板を 1つ切り取り，その際できた曲面上の境界に沿ってMöbiusの帯を
貼り合わせて得られる曲面と同一視する．同様に，N2g+2 を，Σg から開円板を 2つ切り取り，その
際できた曲面上の境界に沿って 2つのMöbiusの帯を貼り合わせて得られる曲面と同一視する．Ng

上の Möbius の帯は ⊗ という図で表され，クロスキャップとよばれる (図 5 参照)．Ng 上の単純閉
曲線がアニュラス型であるとは，その Ng における管状近傍がア二ュラスと微分同相であるときをい
う．また，滑らかな多様体の間の滑らかな写像 F に対して，F の臨界点全体の集合を Crit(F ) で，
臨界点全体の集合の F による像を ∆F := F (Crit(F ))で表すことにする．

2 Lefschetzファイバー空間の定義
本節では Lefschetz ファイバー空間とそれに関する用語を定義する．詳しい解説は，[11]，[20]，

[21]などを参照されたい．

定義 2.1. X を連結かつコンパクトで滑らかな 4次元多様体，Σを向き付けられた連結かつコンパ
クトで滑らかな 2次元多様体とし，f : X → Σを滑らかな写像とする．3つの組 (X,Σ, f)が次の 3

つの性質 (LF1)-(LF3)を満たすとき，これを Lefschetzファイバー空間という：

(LF1) ∂X = f−1(∂Σ)；
(LF2) Crit(f) ⊂ Int(X)；
(LF3) 各点 x ∈Crit(f) に対して，x まわりの複素座標チャート (U,φ) と，f(x) まわりの複素座標

チャート (V, ψ)で，任意の (z, w) ∈ φ(U) ⊂ C2 に対して

(ψ ◦ f ◦ φ−1)(z, w) = zw

を満たすものが存在する．

X および Σは，それぞれ Lefschetzファイバー空間 (X,Σ, f)の全空間，底空間とよばれる．

Lefschetzファイバー空間 (X,Σ, f)が有向であるとは，X が向き付け可能であるときをいう．い
ま，(X,Σ, f)を有向 Lefschetzファイバー空間とする．f の任意の臨界点において，定義 2.1(LF3)



を満たし，かつ局所座標系が向きを保つ写像であるような複素座標チャートがとれるとき，(X,Σ, f)

はキラルであるという (ここで，C2は複素多様体なので，特に概複素構造をもち，それによって C2に
は向きが自然に定まるが，φ(U) ⊂ C2 には C2 がもつこの向きから誘導される向きが入っていること
に注意する)．逆に，定義 2.1(LF3)を満たし，かつ向きを保たない局所座標系をもつ複素座標チャー
トがとれるような f の臨界点が存在するとき，(X,Σ, f) はアキラルであるという．x ∈ Crit(f)

が正の臨界点であるとは，定義 2.1(LF3) を満足する x まわりの複素座標チャート (U,φ) の局所座
標系 φ : U → φ(U) が向きを保つときをいう．また，x ∈ Crit(f) が負の臨界点であるとは，定
義 2.1(LF3) を満足する x まわりの複素座標チャート (U,φ) の局所座標系 φ : U → φ(U) が向き
を保たないときをいう．f の各正則値の f による逆像は，(X,Σ, f) の正則ファイバーとよばれる．
Ehresmann のファイバー束定理より (f−1(Σ −∆f ),Σ −∆f , f |f−1(Σ−∆f )) は曲面束になることが
従い，よってこのことから，正則ファイバーはある種数 g をもつ曲面 Σg と微分同相であることが分
かる．この g ≧ 0を (X,Σ, f)の種数という．なお，f の各臨界値の f による逆像は，(X,Σ, f)の特
異ファイバーとよばれる．
一方で，Lefschetzファイバー空間 (X,Σ, f)が非有向であるとは，X が向き付け不可能であると
きをいう．非有向 Lefschetzファイバー空間に関しても正則ファイバー，特異ファイバー，および種
数が同様に定義されるが，この場合，各正則ファイバーは Ng (g ≧ 1)と微分同相であることに注意
する．

注意 2.2. Lefschetzファイバー空間 (X,Σ, f)の各臨界点のまわりが定義 2.1(LF3)のような様子に
なっていること，およびX のコンパクト性により，Lefschetzファイバー空間の臨界点は高々有限個
であることが分かる．また，必要なら f を少し摂動することによって，制限写像 f |Crit(f) が単射で
ある，すなわち，(X,Σ, f)の各特異ファイバーはただ 1つの臨界点をもつようにすることができる．

以降，Lefschetzファイバー空間 (X,Σ, f)を単に，f : X → Σと略記することにする．

3 Lefschetzファイバー空間の消滅サイクルとモノドロミー
本節を通して，Sg を Σg，Ng のいずれかであるとする．

3.1 特異ファイバーの様子と消滅サイクル
いま，Lefschetz ファイバー空間 f : X → Σ の底空間 Σ 上に，始点が正則値，終点が臨界値で，
終点以外は臨界値を通らないような道 µ をとる．この道に沿って，全空間内にある正則ファイバー
を動かすと，正則ファイバー内のある単純閉曲線は次第に小さくなっていき，終点である特異ファイ
バーに到着すると，この単純閉曲線は一点に潰れる (図 1参照．なお，潰れた点は f の臨界点に一致
する)．このような単純閉曲線を µから定まる消滅サイクルという（前節でも述べたように正則ファ
イバーは閉曲面と微分同相であるが，この微分同相写像を任意に 1つ固定し，それによる消滅サイク
ルの閉曲面への像もまた，消滅サイクルという）．なお，消滅サイクルのアイソトピー類は上でとっ
たような正則値から臨界値への道の，端点を止めたホモトピー類に対して一意的に定まる．
すべての消滅サイクルが閉曲面に埋め込まれた円板の境界になっていないような有向 Lefschetz



図 1: 消滅サイクルの様子 (ただし，点 y は f の正則値，点 y0 は f の臨界値である)．

ファイバー空間，またはすべての消滅サイクルが閉曲面に埋め込まれた円板，およびMöbiusの帯の
境界になっていないような非有向 Lefschetzファイバー空間を相対的極小な Lefschetzファイバー空
間という．任意の Lefschetzファイバー空間は適切にブローダウンを行うことで，Lefschetzファイ
バー空間の構造を壊すことなく相対的極小にすることができる．

3.2 閉曲面の写像類群，Dehnツイスト，リフトについて
Sg の (向きを保つ)自己微分同相写像全体の集合をアイソトピックで割った集合は，写像の合成に

よって群を成す．この群を Sg の写像類群といい，M(Sg)で表すことにする．
cを Sg 上の (アニュラス型の)単純閉曲線，νc を cの Sg における管状近傍とする．νc の外側は
何も動かさず，νcを 3次元 Euclid空間に向きを保って取り出し，右回りに 2π ひねり，再び Sg に
向きを保って埋め戻すような写像は，Sg における (向きを保つ)自己微分同相写像である (図 2)．こ
の微分同相写像のアイソトピー類を tc ∈ M(Sg)で表し，cに沿った右手系Dehnツイストという．

図 2: cに沿った右手系 Dehnツイスト．

ただし，Sg = Ng のときに cに沿って Dehnツイストを行う際には，νcの向きを定めてから Dehn

ツイストを行う必要がある．νcの向きを明示的に表して Dehnツイストを行いたい場合は，θc を c

の管状近傍の向きとして，tc;θc と表すことがある．
次に，Σg−1 の各点をその対蹠点へと写す写像 J : Σg−1 → Σg−1 を考える．各点 p ∈ Σg−1

において p ∼ J(p) によって生成される最小の同値関係‘∼’で Σg−1 を割ることで，商写像
J̃ : Σg−1 → Σg−1/ ∼= Ng が得られるが，もし，微分同相写像 Ψ : Σg−1 → Σg−1 が Ψ ◦ J = J ◦Ψ
を満たすなら，微分同相写像 Ψ′ : Ng → Ng で，J̃ ◦ Ψ = Ψ′ ◦ J̃ を満たすものが存在する．このと
き，Ψを Ψ′ のリフトという．

補題 3.1 ([4], [18]). g ≧ 3 とする．このとき，η([ω]) := [ω̃] によって定まる写像 η : M(Ng) →



M(Σg−1)は単射群準同型である．なお，ω̃ : Σg−1 → Σg−1 は自己微分同相写像 ω : Ng → Ng の向
きを保つリフトである．

3.3 Lefschetzファイバー空間のモノドロミー
以下，本項を通して，f : X → Σを種数 g の Lefschetzファイバー空間，y を f の正則値とし，f
は n個の臨界値 y1, · · · , yn をもつと仮定する．いま，これらに対して次のような性質を満たす Σ上
の滑らかな単純曲線 µi : [0, 1] → Σ (i = 1, · · · , n)をとる (図 3参照)：

図 3: Hurwitz系の取り方の例．
図 4: µi に関するメリディアンループ．

• 各 i = 1, · · · , nに対して，µi(0) = y，µi(1) = yi，µi([0, 1)) ⊂ Σ−∆f．
• i ̸= j なら，µi([0, 1]) ∩ µj([0, 1]) = {y}．
• 点 y を中心とする半径が十分小さい Σ 内の円周を反時計回りに一周するとき，単純曲線は
µ1, · · · , µn の順に現れる．

このような単純曲線の列 (µ1, · · · , µn) を f : X → Σ の Hurwitz 系という．また，Hurwitz 系
(µ1, · · · , µn)に対して，さらに次のような性質を満たす滑らかな単純閉曲線 ai : [0, 1] → Σ−∆f (i =

1, · · · , n)をとる (図 4参照)：

• a(0) = a(1) = y

• 各 i = 1, · · · , nにおいて，ai は yi の十分近くを反時計回りに回るような µi に沿ったループ．

各 i = 1, · · · , nに対して，上のような ai およびそのホモトピー類 [ai] ∈ π1(Σ−∆f , y)を µi に関す
る f : X → Σのメリディアンループという．
Lefschetzファイバー空間 f : X → Σに対して，その正則ファイバーと閉曲面の間の微分同相写像
を 1つ固定することで，点 y を基点とする基本群 π1(Σ−∆f , y)から Sg の写像類群M(Sg)への群
準同型写像

ρf : π1(Σ−∆f , y) → M(Sg)

が得られる．この群準同型写像を f : X → Σのモノドロミー表現という (モノドロミー表現の定義
は，例えば [15]，[20]，[21]を参照されたい)．メリディアンループのモノドロミー表現による像は次
の定理のようになる．



定理 3.2. ρf : π1(Σ−∆f , y) → M(Sg)，(µ1, · · · , µn)をそれぞれ種数 gの Lefschetzファイバー空
間 f : X → Σのモノドロミー表現，Hurwitz系とする．各 i = 1, · · · , nに対して，ai を µi に関す
る f : X → Σのメリディアンループ，ci ⊂ Sg を µi から定まる f : X → Σの消滅サイクルとする
とき，ai のホモトピー類 [ai] ∈ π1(Σ−∆f , y)の ρf による像は，Sg における ci に沿った Dehnツ
イストに一致する．なお，Sg = Σg の場合，この Dehnツイストは，消滅サイクルが正の臨界点へと
潰れるとき +1乗，負の臨界点へと潰れるときは −1乗となる．また，Sg = Ng の場合，この Dehn

ツイストが +1乗，または −1乗であるかは，消滅サイクルの管状近傍の向きの取り方に依存する．

注意 3.3. 主結果の 1つである命題 5.2の証明での途中の議論から，非有向 Lefschetzファイバー空
間の消滅サイクルはすべてアニュラス型であることが分かる．よって，定理 3.2の Dehnツイストは
非有向 Lefschetzファイバー空間の場合においても問題なく定義される．

以下，本項の残りではΣはD2，または S2のいずれかであるとする．f : X → Σ，点 y ∈ Σ−∆f を
本項冒頭のようにとり，正則ファイバーと Sg の同一視を 1つ固定する．また，ζ1, · · · , ζn ∈ {1,−1}
とする．f : X → Σの Hurwitz系 (µ1, · · · , µn)をとることで，µi から定まる f : X → Σの消滅サ
イクル ci ⊂ Sg，および µi に関する f : X → Σのメリディアンループ αi ∈ π1(Σ−∆f , y)が得られ
る (i = 1, · · · , n)．Σ = D2 のとき，π1(D2−∆f , y)におけるループの積 α1 · · ·αn ∈ π1(D2−∆f , y)

は D2 の境界のホモトピー類 [∂D2] ∈ π1(D2 −∆f , y)に一致するので，定理 3.2によりM(Sg)にお
ける等式

ρf ([∂D2]) = tζ1c1 · · · t
ζn
cn

を得る．また，Σ = S2 のとき，[∂D2] = 1であるから，上の等式の左辺がM(Sg)の単位元であるよ
うな等式が得られる．いま得た 2つの等式の右辺にある Dehnツイストの積をそれぞれ円板上，球面
上の Lefschetz ファイバー空間 f : X → Σ のモノドロミー分解という．ここまでの議論とは逆に，
次も成り立つ．

定理 3.4. c1, · · · , cn を Sg 上の (アニュラス型) 単純閉曲線とする．このとき，種数 g の円板上の
Lefschetzファイバー空間で，その消滅サイクルが c1, · · · , cn となるものが存在する．さらに，もし
この c1, · · · , cn がM(Sg)において

tζ1c1 · · · t
ζn
cn = 1

を満たすとき，種数 g の球面上の Lefschetzファイバー空間で，その消滅サイクルが c1, · · · , cn とな
るものが存在する．

本項の最後に，非有向 Lefschetzファイバー空間のモノドロミー分解に関して注意しておく．定理
3.4により，M(Ng)における Dehnツイストの積を準備することで，我々はその Dehnツイストの
積をモノドロミー分解にもつ非有向な Lefschetzファイバー空間を構成することができるが，このモ
ノドロミー分解の Dehnツイストは，各単純閉曲線の管状近傍の向きを調節することで，すべて +1

乗にすることができる．このように表示されたモノドロミー分解を，正のモノドロミー分解という．



4 Lefschetzファイバー空間の同型
定義 4.1. 2つの Lefschetzファイバー空間 f1 : X1 → Σ，f2 : X2 → Σが同型であるとは，微分同
相写像H : X1 → X2，および向きを保つ微分同相写像 h : Σ → Σで，f2 ◦H = h ◦ f1 を満たすもの
が存在するときをいう．ただし，f1 : X1 → Σ，f2 : X2 → Σが有向なら，H : X1 → X2 は向きを
保つ写像であるとする．

Kas[12]，および松本幸夫氏 [15]は，次の定理のように，2つの有向 Lefschetz ファイバー空間が
同型であるための必要十分条件をモノドロミー分解の言葉で記述した．

定理 4.2 ([12], [15]). 各 i = 1, 2に対し，fi : Xi → Σを種数 g の円板，または球面上の相対的極小
な有向 Lefschetzファイバー空間とする．ただし，Σ = S2 のとき，gは 2以上であると仮定する．こ
のとき，f1 と f2 が同型であることは，それらのモノドロミー分解が次の 3つの変換で移り合うこと
と同値である：ζ1, · · · , ζn ∈ {1,−1} に対して，

(HE1)

(HE1-1)

tc1
ζ1 · · · tciζitci+1

ζi+1tci+2

ζi+2 · · · tcnζn

↔ tc1
ζ1 · · · tciζitci+1

ζi+1(tci
−ζitci

ζi)tci+2

ζi+2 · · · tcnζn ;

(HE1-2)

tc1
ζ1 · · · tci−1

ζi−1tci
ζitci+1

ζi+1 · · · tcnζn

↔ tc1
ζ1 · · · tci−1

ζi−1(tci+1

ζi+1tci+1

−ζi+1)tci
ζitci+1

ζi+1 · · · tcnζn ;

(HE2) 向きを保つ自己微分同相写像 σ : Σg → Σg に対して

tc1
ζ1 · · · tcnζn ↔ tσ(c1)

ζ1 · · · tσ(cn)
ζn .

5 主結果について
本節では筆者が得た結果を紹介するが，その前に 1つ用語を準備しておく．
M を滑らかなm次元多様体とし，ob(TpM)を点 p ∈M における接空間 TpM の順序つき基底全
体の集合とする．TpM の 2つの順序つき基底がそれらから定まる基底変換行列の行列式が正である
とき同値であると定めることで，ob(TpM)に同値関係‘∼’が定まり，特に，商集合 ob(TpM)/ ∼
が得られる．いま集合 M̃ を

M̃ := {(p, op) | p ∈M, op ∈ (ob(TpM)/ ∼)}

と定め，写像 π : M̃ →M を任意の (p, op) ∈ M̃ に対して

π(p, op) := p



により定める．このとき，π は向き付け二重被覆写像であり，本稿ではこれを標準的な向き付け二重
被覆写像とよぶことにする．
非有向 Lefschetzファイバー空間の向き付け二重被覆は次の命題 5.1のようになり，さらにその消

滅サイクルについて，命題 5.2が成り立つ．

命題 5.1. (好川 [19])．f : X → Σを種数 g の非有向 Lefschetzファイバー空間，π : X̃ → X を標
準的な向き付け二重被覆写像とする．このとき，f ◦ π : X̃ → Σは正の臨界点と負の臨界点を同じ数
だけもつ種数 g − 1のアキラルな Lefcshetzファイバー空間である．

命題 5.2. (好川 [19])．f : X → Σを種数 g の非有向 Lefschetzファイバー空間，π : X̃ → X を標
準的な向き付け二重被覆写像とする．このとき，種数 g − 1 のアキラルな Lefcshetz ファイバー空
間 f ◦ π : X̃ → Σ の消滅サイクルは，f : X → Σ の消滅サイクルの π による逆像である．特に，
f ◦ π : X̃ → Σの消滅サイクルは Σg−1 上において対蹠的な位置関係にあるペアとして出現する (図
5参照)．

非有向 Lefschetzファイバー空間のモノドロミーとその向き付け二重被覆から得られる Lefschetz

ファイバー空間のモノドロミーは，補題 3.1にて定められている単射群準同型によって次のように関
係づけられる．

命題 5.3. (好川 [19])．f : X → Σを種数 g の非有向 Lefschetzファイバー空間，π : X̃ → X を標
準的な向き付け二重被覆写像，η : M(Ng) → M(Σg−1)を補題 3.1にて定められている単射群準同
型とする．このとき，g ≧ 3に対して，次の等式が成り立つ：

ρf◦π = η ◦ ρf .

cを Ng 上のアニュラス型単純閉曲線，νcを cの Ng における管状近傍とし，νcの向きを 1つ固
定する．このとき，J̃−1(νc)は直和な 2つの単純閉曲線 J̃−1(c)の直和な管状近傍であり，しかも，
この直和な管状近傍には異なる向きが定まる．そこで，γ を J̃−1(c) を構成する単純閉曲線のうち，

図 5: 種数 g の非有向 Lefschetzファイバー空間 f : X → Σの消滅サイクル (下)と，種数 g − 1の
アキラルな Lefcshetzファイバー空間 f ◦ π : X̃ → Σの消滅サイクル (上)．なお，この図では g は
奇数である．



その管状近傍の向きがはじめに定めた νcの向きと一致するものとするとき，J̃−1(c)を構成するもう
一方の単純閉曲線を γ と表すことにする．この約束のもと，命題 5.3，および定理 3.2から次の系が
従う．

系 5.4. (好川 [19])．g を 3以上の整数とし，f : X → Σを正のモノドロミー分解 tc1;θc1 · · · tcn;θcn
をもつ種数 g の非有向 Lefschetzファイバー空間とする．また，各 i = 1, · · · , nに対し，γi ⨿ γi を
直前で行った議論のように θci から定まる J̃ による ci の逆像とする．このとき，種数 g − 1のアキ
ラルな Lefcshetzファイバー空間 f ◦ π : X̃ → Σのモノドロミー分解は

tγ1
t−1
γ1

· · · tγn
t−1
γn

によって与えられる．

系 5.4によって，非有向な Lefschetzファイバー空間のモノドロミー分解を有向な Lefschetzファ
イバー空間のモノドロミー分解へと持ち上げ，さらに定理 4.2 を適用することで，次の定理が得ら
れる．

定理 5.5. (好川 [19])．円板または球面上の種数 3以上の 2つの相対的極小な非有向 Lefschetzファ
イバー空間が同型であるための必要十分条件は，それらの正のモノドロミー分解が次の 3つの変換で
移り合うことである：

(i-1)

tc1;θc1 · · · tci;θci tci+1;θci+1
tci+2;θci+2

· · · tcn;θcn
↔ tc1;θc1 · · · tci;θci tci+1;θci+1

(tci;θci
−1tci;θci )tci+2;θci+2

· · · tcn;θcn ;

(i-2)

tc1;θc1 · · · tci−1;θci−1
tci;θci tci+1;θci+1

· · · tcn;θcn
↔ tc1;θc1 · · · tci−1;θci−1

(tci+1;θci+1
tci+1;θci+1

−1)tci;θci tci+1;θci+1
· · · tcn;θcn ;

(ii) 自己微分同相写像 ω : Ng → Ng に対して

tc1;θc1 · · · tcn;θcn ↔ tω(c1);ω∗(θc1 )
· · · tω(cn);ω∗(θcn ).

ここで，ω∗(θc)は θc から誘導される ω(c)の管状近傍の向きを表す．

定理 5.5は定理 4.2の非有向版に相当する．
謝辞：講演の機会を与えてくださった「第 22回数学総合若手研究集会」の世話人の皆様に心より感
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[3] R. İ. Baykur and P. Morgan, On nonorientable 4-manifolds, arXiv:2506.20950.

[4] J. S. Birman and D. R. J. Chillingworth, On the homeotopy group of a non-orientable

surface, Proc. Cambridge Philos. Soc. 71 (1972), 437–448.

[5] S. Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom., 53 (1999),

205–236.

[6] H. Endo, Meyer ’s signature cocyle and hyperelliptic fibrations, Math. Ann., 316 (2000),

237-257.

[7] H. Endo and Y. Gurtas, Lantern relations and rational blowdowns, Proc. Amer. Math. Soc.,

138 (2010), 1131–1142.

[8] H. Endo, T. E. Mark, and J. Van Horn-Morris, Monodromy substitutions and rational

blowdowns, J. Topol. 4 (2011), 227–253.

[9] R. Fintushel and R. Stern, Rational blowdowns of smooth 4-manifolds, J. Differential Geom.,

46 (1997), 181–235.

[10] E. Giroux and J. Pardon, Existence of Lefschetz fibrations on Stein and Weinstein domains,

Geom. Topol., 21(2):963–997, 2017.

[11] R. E. Gompf and A. I. Stipsicz, 4-Manifolds and Kirby Calculus, Grad. Stud. Math., 20,

Amer. Math. Soc., Providence, RI, 1999.

[12] A. Kas, On the handlebody decomposition associated to a Lefschetz fibration, Pacific J.

Math., 89 (1980), 89–104.

[13] A. Loi and R.Piergallini, Compact Stein surfaces with boundary as branched covers of B4,

Invent. Math. 143 (2) (2001), 325–348.

[14] Y. Matsumoto, On 4-manifolds fibered by tori II, Proc. Japan Acad., vol. 59 Ser. A (1983)

100-103.

[15] Y. Matsumoto, Lefschetz fibrations of genus two―a topological approach, In: Topology and

Teichmüller Spaces (Katinkulta, 1995), World Sci. Publ., River Edge, NJ, 1996, 123–148.

[16] M. Miller and B. Ozbagci, Lefschetz fibrations on nonorientable 4-manifolds, Pacific J.

Math., 312 (2021), no. 1, 177-202.

[17] B. Ozbagci, Signatures of Lefschetz fibrations, Pacific J. Math. 202 (2002), no. 1, 99-118.

[18] B. Szepietowski, Embedding the braid group in mapping class groups, Publ. Mat. 54 (2010),

no. 2, 359–368.

[19] T. Yoshikawa, Orientation double covers of non-orientable Lefschetz fibrations,

arXiv:2509.06624.

[20] 遠藤久顕, Lefschetz ファイバー空間, 数学, 第 69巻, 2017年.

[21] 遠藤久顕, 早野健太, 『4次元多様体とファイバー構造-レフシェッツ束のトポロジー-』. 共立出
版, 2024年.


